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Abstract: How can airlines and aircraft manufacturers leverage machine learning technologies in 

their respective businesses? With technology becoming ever more available through the advent 

of open-source projects and the cloud, not to mention digital storage becoming ever cheaper 

according to Moore’s Law, one can reasonably expect wider application of previously complex 

technological methods in various industries. While complex topics such as big data, Internet of 

things (IoT), and machine learning (ML) remain in the wheelhouse of tech companies since they 
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develop the technologies themselves, it seems that the same ideas can stick out as overused 

buzzwords in other businesses. This report intends to confront one of these, ML, and determine 

whether players in the Large Commercial Aircraft (LCA) industry can benefit from it and to 

what extent those on both sides – manufacturers as sellers and airlines as purchasers – will 

employ it. The benefit from reading the research most directly applies to strategists within the 

aircraft and airline industries, but extends to any businessperson with an interest in knowing how 

ML will impact their future. See the Appendix to access and run the models under research. 
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INTRODUCTION 

 Both airlines and aircraft manufacturers operate in a complex competitive environment. 

To best determine machine learning’s (ML) applicability to these businesses, this research takes 

the experimental approach of creating three exemplary, yet primitive, models with available data. 

Using Google’s open-source software library TensorFlow in tandem with its free cloud 

development environment Google Colaboratory, the creation of these models is viewable to and 

modifiable by any reader. While many mathematical models in research remain confusing to the 

common person, the background and interactivity of this research should give more readers a 

decent grasp on how ML works and how one can apply it. By creating and training feasible 

models on public information, the report showcases the possibilities for professional companies 

and organizations which have greater resources and more detailed internal metrics.  

 Although most applicable to those involved in strategic decision-making in airline and 

aircraft manufacturing businesses, this research will aid any student or businessperson in better 

understanding ML and its potential future impacts. Throughout the following sections filled with 

outside evidence and model outputs, this report will answer the following question: how can 

airlines and aircraft manufacturers best leverage machine learning technologies in their 

respective businesses? 

 

MACHINE LEARNING SIMPLE OVERVIEW 

 The wide range of pre-written ML tools abstract much of the process’s complexity from 

the researcher; however, it does behoove one to understand the fundamentals in order to avoid 

incorrect assumptions. While a computer model attempts to learn a relationship between input(s) 

and output(s), it does not do so magically. In a series of iterations over the data, the computer 
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attempts to make error-minimizing modifications – however slight or big according to the set 

learning rate – to its “function” that maps between input and output. One can imagine the 

difficulty of running this process without the powerful computers and pre-made tools of today’s 

technology age. 

Basic Mathematical Background 

 Without going too in depth on the math, one can understand the basic underpinnings of 

ML reliant upon algebra. Consider a simple linear regression: mathematically, one minimizes the 

sum of the squares of the residuals of all examples under study. Taking this to ML, examples are 

composed of input “features” and output “labels” or “targets”. The sum of squares, which the 

model should minimize over time, becomes the “loss function” of the model. The least squares 

loss function is referred to as mean square error (MSE) and is commonly utilized in machine 

learning (Google, n.d.). 

 The reduction in loss of the model remains the complex part, and thus, one must venture 

into the realm of calculus. For the simple linear regression example, the coefficient for each 

variable represents the associated “weight” for each input feature in ML. Each weight has a 

corresponding loss value. When looking at a plot of weight versus loss for a convex problem, 

one notices that the plot will always be ‘U’-shaped (Google, n.d.). The loss function converges at 

the minimum point in this plot, with a slope of zero; modifying the weight for an input at this 

point would only increase loss. To get to this point, one must realize that the derivative, or ML-

termed “gradient”, of the loss function will always point in the direction “of steepest increase in 

the loss function” (Google, n.d.). With the goal of minimizing loss, the model is programmed to 

move in the direction of the negative gradient, or steepest decrease in the loss function. Thus, the 
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model reduces loss and finds the optimal weights to map the input features to the labels or 

targets. 

Mapping Input Features to Targets  

 Within machine learning, this paper focuses on the topic of supervised learning, where 

one clearly informs the model of each example’s input features and output labels. Worth 

mentioning is the idea of unsupervised learning, wherein the researcher does not input labelled 

examples. Instead, the model attempts to learn relationships among input features and create its 

own associations and groupings or clusters. The two types of learning can have very different use 

cases due to the requirement of “ground truth” labels in supervised learning. 

Training and Validating the Model 

 After deciding upon the features and labels, a researcher must then train the model. In 

training, the investigator must set some parameters manually. These parameters, called 

hyperparameters, include the learning rate or step size, the batch size, the number of steps, and 

the training/validation/test data split. The learning rate dictates how big of an adjustment the 

model makes per data point. Through multiple training runs, one usually finds the right balance 

between learning too slowly and learning so quickly that the model overshoots the minimum 

repeatedly. The model will train over N batches of X examples (where N is number of steps, and 

X is batch size); with a high number of steps, the model might have to repeatedly go over the 

same data.  

 In order to confront the inevitable consequence of overfitting (i.e. learning only the very 

specific relationship of current data, and therefore not predicting new outputs well) one must set 

the data split for training, validation, and test data. The model learns on the training data each 

training run. When tweaking hyperparameters, one sees the error results from validation data, 
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which is tested for loss but does not teach the model. After one completes all hyperparameter 

adjusting and model training, the model runs over the test set in order to see its effectiveness on 

completely removed examples (Google, n.d. “Machine Learning Crash Course”). 

 In training the model, various optimizers exist. Gradient descent, one of the simplest, just 

follows the idea of moving in the direction of the negative gradient of loss. The simple becomes 

ineffective in more complex scenarios where a problem does not fit the regular convex example 

(i.e. it has multiple minima). More recently developed optimizers make use of techniques such as 

modifying the learning rate over time and applying moving averages to gradients to avoid getting 

stuck in a sub-optimal minimum (Bengio 2012, 9). This research uses one such optimizer, Adam, 

as it has relatively great results in achieving a minimal loss quickly (Kingma and Ba 2014, 1-7). 

Utilized Technologies 

 Past the theoretical portion of this transformational technology, this research shifts to the 

practical. A variety of ML software libraries exist for open-source use. The following models use 

TensorFlow, a very common one originating from Google. The TensorFlow code written for this 

research utilizes Python as its language of choice, also available to the general public. Finally, 

these models train and run on Google’s free cloud service Colaboratory, or “Colab” for short. 

Essentially, Google provides a limited and varying amount of free computational power for 

anyone in the form of remote graphics processing units (GPUs) (Google, n.d. “Colaboratory”). 

Cloud technology, or temporary use of a company’s compute, allows for operation on a code 

execution cost basis. Cloud services can take the place of a technologist’s burdensome pastime 

of having to buy and set up servers and GPUs. With such availability and ease of use, one should 

not find ML’s rapid adoption surprising. 
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AIRLINE AND AIRCRAFT MANUFACTURER BACKGROUND 

 Besides the massive amounts of capital necessary for research and development and 

operation in both the aircraft and airline businesses, the industries are also distinct in that the 

miniscule difference between “success and catastrophic failure [lies] in the subtlety and 

perfection of program management and systems integration” (Fallows 2013, 163). With 

potentially disastrous costs and difficult-to-achieve profits, these sectors can serve as an 

interesting environment for those empowered by ML to improve recognized relationships and 

even find unrecognized ones.  

 Industry-shocking events such as 9/11 or the recent Coronavirus (COVID-19) pandemic 

evidence the quick shifting in strategy required to compete and remain in these types of 

businesses (PricewaterhouseCoopers n.d.). Handcrafted models can falter at the occurrence of an 

unexpected world event, requiring researchers and analysts to head back to the metaphorical 

drawing board. On the other hand, ML models can actively learn from incoming data and make 

adjustments continuously, providing faster and more effective decision-making. 

A Look at Airline Profitability 

 Airlines have quite a complex problem in their hands: maximize profit by trying to best 

predict ever-changing passenger demand and reduce operational and fixed costs. Connected with 

the aircraft industry, airlines must buy or lease airplanes for use. A private aircraft agent, which 

will remain anonymous, mentioned that an airline’s choice of aircraft for profitability may best 

correlate with operating routes, seat revenue, and costs.  

 The complexity is magnified by the network of routes which is dependent upon each 

route’s demand, the airline’s pricing strategy, and “the capacity of the fleet it [operates]” (Hebert 

and Taleb 2011, 6). Further, carrier profitability depends on both the acquisition and exploitation 
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costs of its airplanes, and performance “[is] essentially contingent on the effective control of [its] 

operating costs” (Hebert and Taleb 2011, 6).  

 Demonstrating the interdependence of considerations, three researchers found it 

beneficial to integrate the interplay of the crew-scheduling procedure “with the airline operations 

of schedule design, fleet assignment, and aircraft routing” in a consolidated model, yet 

determined it to require further work (Sherali, Bae, and Haouari 2013, 474). Overall, one can see 

how many potential relationships must be taken into account for profitable airline models. Since 

most relevant data for such models remains proprietary and thus internal to the airlines, this 

research intends to demonstrate ML’s potential power for mapping features to outputs. 

The Large Commercial Aircraft (LCA) Sector 

 Before the Coronavirus tanked demand in the airline and, therefore, aircraft industries, 

geographically widespread opportunities for growth abounded. In 2005, 35 percent of global 

demand existed in the BRIC (Brazil, Russia, India, China) countries – up from less than 5 

percent a few years earlier (Hebert and Taleb 2011, 7). The demand in developing countries 

causes companies such as Airbus and Boeing to consider the advantages and disadvantages of 

expanding operations. With China as a specific example, they must balance “the opportunities of 

the world’s fastest-growing market with the challenges posed by the world’s most rapidly 

expanding industrial base” (Fallows 2013, 145). 

 Keeping in mind how quickly their demand changes, aircraft manufacturers can benefit 

from applying machine learning technology to detect moving trends in the industry. Growing and 

innovating from a yet established business, competitors from developing areas such as China can 

potentially more quickly implement ML and reap its available competitive advantages.  
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MODEL 1: AIRCRAFT LIST PRICE 

 The first model attempts to determine an aircraft’s list price based on a variety of input 

features. All of the data used in this model comes from 2017. First, the list prices originate from 

Airbus’ official website and a financial report on Boeing’s list prices in 2017 (Airbus 2017, 

Ausick 2017). With the goal of learning about profitability of different kinds of aircrafts, it 

makes sense to begin with determining what goes into their pricing. 

Approach 

 The first model uses a linear regressor, one of the simplest estimators, in tandem with the 

aforementioned Adam optimizer. A linear regressor takes any number of numerical input 

features and attempts to predict a continuous numerical output target.  

 Much of the logic of this model, as well as of the subsequent ones, originates from one of 

Google’s examples on model validation (Google n.d. “Validation”). The Colab trains the model 

over subsequent periods, keeping track of the RMSE of both the training set and validation set as 

a tracker of model error. Plotting the graph of both RMSE values over the ten periods shows the 

model learning the relationship between inputs and output.  

 In determining the input features, available characteristics on all of the planes with prices 

were found in a December 2017 booklet prepared by DVB Bank SE’s Aviation Research 

department (DVB Bank SE 2017). These characteristics include standard 2-class seating 

quantity, maximum range in nautical miles, and year of first flight. In order to make the year of 

first flight a learnable input of more sensible range, this feature is transformed into years between 

the airplane’s first flight and 2017. While ideally one should normalize all inputs within the same 

range of each other – this can help the model converge quicker – the model leaves out this extra 

step for simplicity’s sake. Finally, each input feature can alone train the model, allowing for 
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comparison in each feature’s effectiveness to predict price, and any combination of features can 

together train the model for potentially better results. 

 Due to the limited number of examples available, a test set was left out of this and 

subsequent models. Test sets mainly serve to ensure that hyperparameters do not specifically 

apply to the current data, but little hyperparameter tweaking occurs in these simple experiments. 

Adjustments in learning rate occur to attempt to create a leveling off in learning. To ensure that 

the models do not over-fit to the data, the programs utilize a simple split of approximately 80 

percent training data and 20 percent validation data. 

Results 

 Training with all three of the input features results in a very nice reduction in training and 

validation error over time, as seen in Figure 1 below. 

 

Figure 1: Training on All Three Features for Model 1 

 As expected, training error results turn out much lower than validation, as the model 

directly learns from the training data split. The graph evidences, though, that the model reduces 

validation error without ever seeing the validation data. Clearly, there exists a relationship 

between the three input features and the output of list price. After training, the model can output 
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predictions within the Google Colab. However, since few input features of few examples make 

up the training data, these predictions do not result in very meaningful information. 

 Instead of trying to utilize predictions, another methodology can provide useful 

information. The model can selectively utilize any combination of features or even a single 

feature. Seeing how model error varies with each feature alone can demonstrate which factors 

have greater influence on price. Running the model with each of the single features produces the 

plots in Figure 2 below. 

 

 

Figure 2: Training on Each of the Three Features for Model 1 

 Based on this experiment, standard 2-class seating quantity best predicts price, followed 

by range and then years since the model’s first flight. Seating best reduces error for the model in 

both the training and validation data splits.  
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Takeaways 

 This model demonstrates that a learnable relationship exists between the three input 

features and the list price of an aircraft. Applying each feature alone to the training of the model 

illustrates how the best to worst predictors of price are standard 2-class seating quantity, 

maximum range, and years since the model’s first flight. Due to lack of normalization and 

potential lack of usefulness of a feature, the combination of all three inputs does not result in the 

least amount of error. Clearly, ML can rank the importance of factors on predicting a continuous 

output. Such a utility can extend to many other use cases.   

 

MODEL 2.1: ENTERING AIRLINE SERVICE OF CITY 

 The second model attempts to determine whether a major airline of a country should 

enter into servicing a city based on the city’s passenger throughput and whether two other major 

airlines service said city. The United States serves as the country in running this model, while 

United Airlines, American Airlines, and Delta Airlines serve as the major airlines, and American 

airports with a throughput of at least two hundred thousand passengers serve as the cities. On the 

next page, Figure 3 geographically shows the airports under study, with locational data coming 

from a cross-reference between two sources (Partow n.d., Toolforge n.d.). Enplaned passengers 

numbers originate from a Bureau of Transportation Statistics report on scheduled enplanements 

on U.S. and foreign airlines in each airport (Bureau of Transportation Statistics 2019). Data on 

airlines servicing comes from using the Wayback Machine, looking at each airline’s official 

website. In order to access sites from the past, the internet archive Wayback Machine consults its 

saved webpages over time. Such a system allows for data collection from 2017. 
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Figure 3: American Airports Under Study 

Approach 

 The second model utilizes an Adam optimizer in a linear classifier with output of either 

zero or one, one meaning it predicts the third airline should service that city. Training and 

validation examples originate from holding out one airline at a time as the ground truth output. 

Meanwhile, enplaned passengers in 2017 and how many of the other two serviced the city in 

2017 serve as input features. Geographical data can be useful in a model like this, but since this 

model has a linear basis, it cannot learn regional differences which have a two-dimensional 

nature. 

 Rather than RMSE, this experiment utilizes a different error feature: mean absolute error 

(MAE). With the coding of this Colab, the MAE value shows the average difference between the 

true output and the probability with which the model expects the output to be one (airline should 

service).  

Results 

 Experiment 2.1 produces far less valuable results than the first one, as the model cannot 

find a great relationship between inputs and outputs, as evidenced by the following line plot in 

Figure 4. 
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Figure 4: Training on Model 2.1 

 While the training reduces error over time, an average error of 0.60 at the end of training 

for a process which outputs somewhere between 0.0 and 1.0 remains lackluster. Oddly enough, 

validation error improves better than training error, further signifying an unideal relationship. 

Due to lackluster results, further investigation into a similar model’s viability in China’s 

ecosystem is not undertaken. 

 When using the model to predict outputs for a given city with an input number of 

passengers and an input number of major airlines servicing, one can see the relationships the 

model has found. Upon increasing passengers, the prediction goes up substantially. However, in 

changing the number of airlines servicing, the output changes by only about a ten millionth.  

Takeaways 

 First and foremost, this model shows that there is not a great learnable relationship 

mapping from city passenger throughput and whether two major airlines service said city to 

whether a third major airline should service the city. Realizing this, there must exist many more 

reasons which affect whether a major airline services a city (e.g. acquisitions of smaller airlines). 

This model in particular tends to output only high values to limit error, which might be a result 

of selection of data, as only the top one hundred and seventy-nine U.S. cities serve as input. 
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 The model does seem to weight passengers numbers with a higher importance than 

whether other airlines service a city. This model serves as an example of trying to find 

relationships with too little data (i.e. throwing any data at ML and hoping for a good result). It 

seems that without much more feature data, a mathematically derived empirical model will 

perform far better (Berry 1992, 914-915). 

 

MODEL 2.2: TOTAL AIRLINE SERVICE OF CITY 

 Model 2.2 trains almost identically to Model 2.1 in its approach and data sources. This 

model attempts to determine how many of the three major airlines should service a city based on 

its passenger throughput.  

Approach 

 This second version of the second model implements a linear classifier with four classes 

(i.e. 0, 1, 2, 3) using the Adam optimizer. Each class represents how many of the three major 

airlines should operate in the input city. Therefore, the output target is the sum of the three 

airlines’ servicing values. The error detection for this model utilizes MAE, as well. In order to 

check the output, the Colab sums each class’ value (i.e. 0, 1, 2, 3) multiplied by the model’s 

expected probability of that class, resulting in a single value of how many of the three airlines 

should service the city. 

Results 

 The model does reduce error somewhat, as seen in Figure 5 on the next page. However, 

just as in Model 2.1, one can point to a pretty dismal ending value of MAE. Considering the 

larger scale of Model 2.2, its MAE is slightly better than that of Model 2.1. 
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Figure 5: Training on Model 2.2 

 Similar to Model 2.1, the model has found that outputting high values reduces error. 

Again, the dataset is biased toward bigger airports. In modifying the prediction input of 

passengers, one can see the direct relationship between passenger count and number of servicing 

airlines. Pointing out the same biasing error of this model, inputting a value of zero passengers 

produces a predicted output of approximately 1.50 airlines. 

Takeaways 

 Mirroring Model 2.1, this model shows that there is not a great learnable relationship 

mapping from city passenger throughput to how many of three major airlines should service a 

city. Nonetheless, the model does show that there is a direct correlation.  

 

MODEL 3: AIRCRAFT UTILIZATION RATE 

 The third model attempts to determine an aircraft’s daily utilization rate in hours based on 

a variety of input features.  This experiment makes use of the same aircraft data as in Model 1, 

except all four data points comprise this model’s input features. Utilization rates taken from a 

China Eastern Airlines SEC filing make up the model’s targeted outputs (Securities and 

Exchange Commission 2016). 
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Approach 

 The aircraft utilization model employs a linear regressor and Adam optimizer 

combination, just as in Model 1. Input features include standard 2-class seating quantity, 

maximum range, years between its first flight and 2017, and its list price. Similar to Model 1, 

there are very few data points under study, making ML techniques much less effective. 

Results 

 Training with the four input features on aircraft utilization rates results in a decent 

reduction in RMSE, as shown in Figure 6 below. 

 

Figure 6: Training on Four Features with Model 3 

 As expected, the model reduces training error to a lower minimum than that of validation 

error; with so few examples, a sizable difference in unlikely. Undertaking the training with the 

sole use of each feature, the ability of each variable to reduce error is found – see Figure 7. 
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Figure 7: Training on Each of Four Features with Model 3 

 The best features in Model 1 turn out to be the best features in Model 3 as well. The best 

to worst features are seating, maximum range, years since first flight, and list price. The two 

best, seating and range, appear very similar to the plot which includes all four features. 

Takeaways 

 Model 3 demonstrates that there is a somewhat learnable relationship mapping from the 

four features under study to the daily utilization rate of an aircraft for China Eastern Airlines. 

Although this experiment holds little data from which the model can learn, interesting insights 

still result. In tandem with the first model, this model demonstrates that the same factors which 

correlate with the cost of an aircraft may also correlate with its utilization rate. 
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OVERALL OBSERVATIONS AND POTENTIAL APPLICATIONS 

 While machine learning’s power comes from looking at situations with many more data 

points, these simple experiments demonstrate the potential relationships that ML can find. If 

airlines published more industry data, then models similar in development to these could produce 

far more interesting and relevant relationships. Obviously, due to the competitive advantage of 

internal information, airlines do not release specific aircraft and route information. Along the 

same lines, aircraft manufacturers do not release their proprietary data. Therefore, only those 

within these companies can truly test and use ML’s potentially profitable power within these 

tightly knit industries. 

Improving Current Situations 

 In both the airline and aircraft industries, areas of potential improvement abound. The 

fastest and easiest applications of machine learning are within existing processes. In order to 

garner company-wide support for such a new methodology of determining relationships and 

predicting outputs, strategists should try to find improvements within current operations. Based 

on ML’s already implemented and abstracted functionality, those with a technical background 

and involved in data analytics in these industries can easily supplement their methods with this 

technology. What will begin as a supplement may eventually lend itself to becoming the primary 

methodology. 

Supplementing Future Growth 

 One can find another very interesting use case in that of airline and aircraft companies 

within areas of new growth. Without the pre-determined existing situations typical of highly 

developed nations, the aforementioned BRIC countries can utilize ML to establish best practices 

from the beginning. Fewer entrenched structural limitations should exist in these areas’ 
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industries. Seeing how one can view interesting relationships with simple SEC-filed data by 

China Eastern Airlines, the potential applications for China’s industry insiders are numerous. 

Machine learning pipelines can actively provide data to models such that they continuously learn 

and serve more accurate predictions and correlations. With the air industries rapidly changing 

due to COVID-19, ML can prove invaluable. 

 

SUGGESTED FUTURE RESEARCH 

 As the models in this research remain quite primitive, a variety of potential next steps can 

help explore all machine learning has to offer. 

Diversity of ML Model Types 

 Within this research, the models only made use of the linear type of estimators, although 

they use both the regressor and classifier sub-types. Due to lack of data and intended simplicity 

of this paper, other more complicated networks are not applied. However, additional research on 

these subjects is warranted. 

 For example, multiple heads can combine to form a broader network – essentially a 

model with sub-models providing intermediate inputs. The TensorFlow documentation lists 

numerous additional types of estimators, including nonlinear ones and those intended for deeper 

neural networks (TensorFlow n.d.). Deeper neural networks apply many hidden layers of nodes 

which contribute to the final output. With that scale of a network, these typically require massive 

amounts of data in order to have all of their nodes learn enough to be applicable.  

Greater Quantities of Data 

 Lack of data underlies most issues with potential ML applications. While this research 

focuses on data available from both the United States and China in order to look for 
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comparisons, future research can look specifically at sources which have more data (e.g. data 

specifically from America’s Bureau of Transportation Statistics). Further, those with insider 

access to airline or aircraft manufacturing data have much more interesting information with 

which to create ML models for this industry.  

Policy-Making and Enforcing 

 Beyond both airlines and aircraft manufacturers, air policy makers and enforcers can 

benefit from machine learning’s application. Since ML effectively detects relationships among 

data, one can utilize models to detect violations of policy by looking for abnormalities, or 

situations where an expected output vastly differs from the reality. For example, models can aid 

efforts in searching for anti-competitive behaviors such as price gouging among airlines.  

 

CONCLUSION 

Exploring the underpinnings and simple applications of machine learning greatly 

evidences its high availability and great number of use cases. The models under this research 

illustrate the finding of simple yet interesting correlations and subsequent prediction ability. 

With open-source tools such as Google’s Colab in tandem with TensorFlow, students, 

researchers, or anyone interested in general have the ability to utilize this technology at extent.  

While powerful and available, ML is not a panacea. The experiments in this study 

evidence the importance of large quantities of data in providing useful models and results. 

Further, one of the biggest downsides of ML is that of its inexplicable nature. Especially with 

regard to deeper neural networks, a model will learn appropriate correlations and find ideal 

weightings, yet a produced prediction does not come along with an explanation. Although 

machine learning produces interesting results, one cannot simply interpret them as truth. 
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Nonetheless, ML’s abilities are promising for many industries and associated 

applications. As discussed in this research, the airline and aircraft manufacturing sectors hold 

many possibilities for this burgeoning technology. From improving current business and general 

public situations to aiding in future growth opportunities, machine learning holds a lot of 

potential for these areas. Yet determined is which organizations or corporations will most rapidly 

apply and extend ML. With China having experienced rapid growth in this sector with such a 

large population, strategists should be intent on seeing if involved players will widely adopt this 

methodology. 

 

APPENDIX 

In order to run a model, access its link while signed into a Google/Gmail account. Either copy 

the notebook to your own account, or open it in playground mode. See instructions on notebooks. 

Access to Model 1: 

https://colab.research.google.com/drive/135psItHoTswVIx8zRnf3QVqsOg1mu4Mw 

Access to Model 2.1: 

https://colab.research.google.com/drive/1f9C0cYowAIEPbrdctkU7QT6Yg1YE97dT 

Access to Model 2.2: 

https://colab.research.google.com/drive/1lf5f392jBMLm5PN_Wo2v9sJGcU8RVUV3 

Access to Model 3:  

https://colab.research.google.com/drive/1jcJ9GhAVtw9T-i0hNLaS14FFOkrWx0Oi 
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